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Absfract

Markov and semi-Markov processes are increasingly being used in the

modeling of complex reconfigurable systems (fault-tolerant computers). The

estimation of the reliability (or some measure of performance) of the system

reduces to solving the process for its state probabilities. Such a model may

exhibit numerous states and complicated transition distributions, contributing

to an expensive and numerically delicate solution procedure. Thus, when a

system exhibits a decomposition property, either structurally (autonomous

subsystems), or behaviorally (component failure versus reconfiguration), it is

desirable to exploit this decomposition in the reliability calculation. In

interesting cases there can be failure states which arise from non-failure

states of the subsystems. We present equations which allow the computation

of failure probabilities of the total (combined) model without requiring a

complete solution of the combined model. This material is presented within

the context of closed-form functional representation of probabilities as util-

ized in the Symbolic ]lierarchical Automated Reliability and Performance

Evaluator (SHARPE) tool. The techniques adopted enable one to compute

such probability functions for a much wider class of systems at a reduced

computational cost. Several examples show how the method is used, espe-

cially in enhancing the versatility of the SHARPE tool.



Introduction

Modem reliability modeling practice involves several techniques, including Fault-Tree

analysis and (semi)-Markov processes. Fault-Trees enable one to evaluate the impact of cer-
tain dependencies within the entire system. For instance, the fact that the failure of a certain

component results in the failure of higher-level component (sub-system) may be modeled.
Markov and semi-Markov processes (chains) can depict more general types of dependency.

For example, consider a triplex system consisting of 3 identical components A 1, A2, A3, each
with failure rate _.. Then system failure can be represented within the domain of Fault-Trees

by a '2 out of 3 gate' as in Figure Int-la, or by a set of AND and OR gates (Figure Int-lb).

Failure may also be depicted by a Markov process (Figure Int-2). With the rates indicated,

the probability of failure at time t is the probability that the process is in state F at t.

Another "fault-tolerant architecture" is a triplex which operates by (instantly) detecting

a first fault and then reconfiguring to a simplex system. This is accomplished by unplugging

the defective component and a randomly selected "good" component. There is no way,

using only the three components in a logic gate (Fault-Tree) arrangement, to represent the
event of system failure. But it is easy to give the corresponding Markov process (Figure 2b).

Thus the necessity for Markov models tends to come about when system reconfiguration is a
characteristic feature.

For mission-critical systems found in process-control, avionics, and so on, one is con-

cemed with the reliability at some particular time (mission time). Given a Markov process

that models a system, the unreliability or failure probability can be found by using a numeri-
cal differential equation solver [Reibman & Trivedi]. Alternatively, one may wish to have

this quantity in closed form as a function of time.

Large models (with many states and transitions) arise naturally in the study of complex

reconfigurable systems. The solution of such a model can be both expensive and time-

consuming. However, when the model can be decomposed hierarchically into smaller
models, the process of solving the smaller models is generally less expensive than solving the

large one. The desired reliability number associated with the large number can be computed

from quantities derived in the solution of the smaller ones.

The major purpose of this article is to increase our understanding of hierarchical model-

ing and to increase our capabilities for solving such models. Two equations, presented as

(4.7) and (4.8), govern the method of solution by decomposition.

In order to write down these decomposition relationships we must present the

Chapman-Kolmogorov equations somewhat differently than in previous literature. However,

[Ross] gives a related treamaent. These C-K equations involve quantities (probability density
functions) which are used in a new integral equation, (4.7). The solution of the integral

equation is a function that expresses part of the failure probability present in a "combined
model" that results from two smaller models. The failure mode involved here (in the com-

bined model) does not generally arise from the failure modes of the smaller models. Thus

we have developed a technique for combining models accurately, even though there may be

some interaction between them, leading to new failure modes.

The obvious advantage of the closed-form framework is that once the solution is found

(presumably at significant computational cost), the reliability is easily calculated for any
desired value of time t. In addition, it is easier to find sensitivity functions (with respect to



failure rates or other parameters). The Symbolic Hierarchical Automated Reliability and Per-

formance Evaluator (SHARPE) program takes this closed-form approach [Sahner &

Trivedil]. The reliability functions encountered in SHARPE are the so-called "exponomial"

functions and can be easily represented "symbolically". They consist of probability distribu-

tion functions of a particular algebraic form to be described shortly.

The SHARPE modeling framework is amenable to the use of hierarchical modeling

techniques. SHARPE was intended to promote hierarchical decomposition. Much of the

information needed in applying our decomposition method can be obtained from SHARPE,

either directly as output from the program or after a modest amount of additional computa-

tion. The examples (in section 6) that illustrate the use of our method are made much clearer

by adhering to the closed-form (SHARPE) framework; the reader can observe functions aris-

ing in the solution process explicitly.

For the remainder of the Introduction we examine the SHARPE methodology, closed-

form solution, and hierarchical modeling in greater detail. Section 1 is a review of the basic

concepts of stochastic process theory needed for the finite-state semi-Markov processes that

we deal with. Section 2 gives a form of the Chapman-Kolmogorov integral equations for a

chain, in a manner that provides quantities necessary in the study of hierarchical decomposi-

tion. Section 3 presents the basic facts of the SHARPE solution method applied to certain

types of chain. This is not to be interpreted as a literal description of code (the author is not
a developer of SHARPE), but as background useful in judging what the program's capabili-

ties are, and what enhancements might be desirable.

Section 4 presents an introductory example which shows how simple models can be

built up into larger ones, and how repair complicates the decomposition issue. The problem

is stated, of how to compute probabilities in a "combined model" (which may not even be

semi-Markov). An integral equation is given whose solution answers this question. Section

5 is a digression on constructing certain exponomial distributions, and section 6 provides two

examples that illustrate the power of our method.

Exponomial Distributions

To construct these distributions in an algebraic manner, we take as base field R, the real

numbers (an idealization of computer floating-point numbers). The set of functions

{e m , sinog, cos_, t } where o_ R, generate a ring of functions, which is extended by linear-

ity over R to form an algebra Exp. The subset of this algebra consisting of distribution is

called Deap, the exponomial distributions.

A function F_Dexp has the properties that

l) F(0) = 0,

2) lim F(t)= 1,
L ---iPoo

3) F(t) is non-decreasing for t > 0.

Condition 2) can be relaxed to lira F(t) < 1 for certain applications. In that case we say
t ...# oo

that F is defective, or incomplete, and has mass = 1 - lim F(t) at 00. It is true that, given
t -..._ oo

a finite state Markov process (chain) M, its unreliability function is a complete exponomial

distribution provided that a certain technical condition holds. The condition is that every

absorbing state is a failure state, and that whenever a state is exited, there is a non-zero pro-

bability that it will never be visited again. Hence the "operational" states are transient: call
this the "transient state condition". If we weaken this condition to say merely that every



failure state is an absorbing state, then the unreliability function is a defective exponomial
distribution. This defines a larger class of functions, which we call Dexp +.

The SHARPE program calculates such an unreliability function in closed form for any

Markov process satisfying the "transient state" criterion. In addition, SHARPE can find the

unreliability distribution of certain semi-Markov processes. The process must be acyclic and
the transition functions should be in Dexp. In a semi-Markov process, transition rates from

one state (the present state) to another (the receiving state) are not constant, but depend upon

the time elapsed since the system entered the "present state". We will later show (in section

3) how to use SHARPE to obtain more information about the chain (Markov or semi-Markov

process) than is simply provided by the output of the program. For example, given a Markov

process with cycles, SHARPE does not furnish the probability function (not a distribution) of
a transient state. We show how to modify the chain, and then apply the C-K equations to

find this. It is necessary only to solve one convolutional integral equation, not a system of

equations, and to perform a few simple manipulations using output generated by SHARPE.

The integral equation is generally easy to solve using the Laplace transform. This approach

was first used by Lotka in the theory of industrial replacement, where similar renewal-type

integral equations also arise. See [Lotka]. The rigorous foundations of this solution method

were brought together in [Feller2], using analytic techniques developed in [Churchill].

Hierarchical Modeling

As already indicated, hierarchical modeling methods are built into SHARPE. For

instance, one way to construct a semi-Markov process is by means of state transition func-

tions (distributions) given by the failure distribution of a (constant-rate) Markov chain. That
is, in order to know explicitly a transition function of the semi-Markov chain, the "low-

level" constant-rate chain must be solved. One process is in a sense embedded in the other.

For examples of this type see [Sahner & Trivedi2]. A "full model" could be constructed by

expanding the states in the higher-level semi-Markov chain into several states of a Markov

chain. In many cases this capability of solving the higher- and lower-level models separately

results in less computation and greater numerical robustness.

Another common class of decomposable systems consists of the Cartesian products.

Given MI, M 2 Markov chains, then N=MIxM 2 is Markov. Selecting a state

A = (A,B)_N, A_MI, B_M2, one may modify N by removing all exit transitions from A
to form /V. Thus A is now an absorbing state. Define P^ tO be the distribution function

(possibly defective) corresponding to A. This function could be interpreted as "the probabil-

ity that by time T we have simultaneously been in state A of Mj and state B of M2". We

give several examples of how this scenario can arise in practice. The method we present
allows one to find P^ without having to solve the large chain tV. It is only necessary to

obtain certain information about the smaller chains M l and M 2, which can be found for

example by using SHARPE. Then another integral equation, (4.7), must be solved, leading

to the desired probability function P^. This integral equation is similar to the Chapman-

Kolmogorov forward equation (see [FeUerl] p. 458), and may be solved by the Lotka-Feller
method.

This decomposition approach has several advantages. Work involved in solving an

arbitrary chain with n states increases as the cube (n3). In the Markov case, this is essen-

tially the work involved in finding the eigenvalues of an n×n matrix. Hence, where decom-

position is possible, much less work is needed to find the desired probabilities. Furthermore,

the Cartesian product of even a Markov chain M I with S I, a semi-Markov chain, need not be
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semi-Markov. In general, it is a stochastic process where transition rates depend on the time

elapsed since entry into the state previous to the present state. Provided that one does not
wish to deal with the theory of such general processes, the decomposition method is essen-

tially the only viable approach.

SHARPE is a powerful tool for obtaining exponomial solutions of reliability models.

The techniques suggested in this paper greatly expand the computational horizons of
SHARPE in directions consistent with the hierarchical modeling philosophy, and thus have

more than theoretical value. But the techniques may also be used without recourse to

SHARPE, and using them in the context of numerical methods instead of closed-form solu-

tions is a promising possibility as well.

1. Stochastic processes and distributions

We give a brief review of stochastic processes, with emphasis on the ones that are of

greatest interest to us, namely Markov and semi-Markov processes (or chains). Although the

term chain is sometimes used for discrete-time systems, we use the term to denote a

continuous-time process that is either Markov or semi-Markov. The probabilistic definition

of a Markov chain proceeds as follows. One starts with a space of outcomes, or sample

space S. A continuous-time stoch(tvtic process is, for each t>0, a function X(t). The
domain of the function is the sample space, and each image X(t)_, where ff_S, is an integer

j from 1, • • •, N, identifying a state. So one may say that at time t, the process or outcome
c results in state J. It is most common to classify outcomes into events, and to assign proba-

bilities to the various events. For a finite sample space where all outcomes are equally prob-

able, of course

t'(E) = # o/" c in E
#of ainS'

and the expression (which is a slight abuse of notation) P [X(t) = j] is the probability of the

event consisting of all outcomes c such that X(t)c = j. The quantity P IX(t) = j], called the

state probability for state j. One can define a finite Markov chain to be a finite-state sto-

chastic process X such that, for any set of times to<tt< • • • <tn<t, the conditional probabil-

ity that X (t ) = x given that X (tn) = x_ , X (tn_l) = x__ l, . . . , X (to) = x o, where

x, Xo, • • •, x,, are certain states, is equal to the conditional probability that X(t) = x given

that X(tn) = xn. This is the characteristic memoryless property. This finite Markov chain

has the additional property of time-homogeneity if the quantity

pq(t) = P[X(u + t) =j IX(u) = i]

depends only on t and not on u, for all u>0, i, j such that i ,j. As usual, P[E IF] means
P [E c'ff: ]

the probability of E given F, or
P[F]

Now if one defines

_.ij= dPii(t)It=O,

this quantity may be interpreted as follows. The increase over a short interval dr, of the



probability of being in state j, due to the original probability of being in i, is equal to

P[X(t + dt) = j and X(t) = t]. From the definition of Xij, this equals XijP[X(t) = i].dt.

By a suitable modification of what we have just done, we may obtain the definition and

some properties of a semi-Markov chain. We use the idea of conditional probability density

function, for which see [Trivedi]. Say that the process X enters state xj at time tj if

X(tj)=xj, and if there is an e>O such that X(tj--_)*xj, for all 0<5<_. Also, if
X(O) = Xo, the process X entered Xo at t=O (Xo was the initial state). Given a set of times

to<t l< •.. <tn<t, consider the conditional density function of X entering x at t given that

X entered x,_ at t,, X entered x__t at t__ t, • • • , X entered Xo at t o. If this is always equal

to the density of X entering x at t given that X entered x,_ at t_, the process is said to be

semi-Markov. We have for each pair i, j of states a density function

(1.1) Gij(t,u) = density of X entering j at u+t

conditional on X entering i at u.

The time-homogeneous case occurs when Gq is independent of u>0 for all i, j, t>0.

We shall henceforth refer to a time-homogeneous Markov or semi-Markov process as a

chain. Such a chain, since Markov implies semi-Markov, is characterized by the functions

(1.2) Gij(t) = density of X entering j at t given that

X entered i at time O.

It has been shown (see [Ross], p. 89) that certain other sets of functions serve to

characterize a chain. Consider the (possibly defective) distribution Fij = P IX enters j at
some time % 0<'t < t, and X does not enter any state at any time _¢, 0<_¢<x I X entered i at

0 1. In words, Fij is the probability, conditional on entering i at 0, of ending the sojourn in

i by a jump to j before time t. In his 1964 study [Feller3] of the C-K equations, Feller

makes use of Fq. Another class of functions which determine a chain is referred to as the

transition distributions Cij. Described in words, Cij(t) is the probability that X will jump to
j (firm entry) by time t, given that X entered i at 0 and assuming that Cij is the only transi-

tion out of state t. Thus C_j is a distribution valid in the absence of competing transitions.

The distributions {C O }, over all j, are ass'umed to correspond to the independent events of

jumping from i to the various states j. The functions {Cq } are what is supplied to SHARPE
when it is desired to "solve" a chain (determine the time-dependent probability functions of

its states).

A relation between Fij and Cij will be given subsequently. For instance, when the
chain is Markov, we have

(1.3) CO(t) = 1 - e -x°t , and

7t..:

Fii(t ) = -_L-.'J .(1 - e ' ).
2.Aik

The Ci/ functions can be given in various ways. For certain purposes, it is not necessary to

define them completely but rather it is enough to give their mean and variance as distribu-

tions. This approach is used by the SURE [Butler & White] package to find upper and lower



boundson thereliabilityof a systemwhosereconfigurationtimesarenotexponentiallydistri-
buted.TheSHARPEpackage,on theotherhand,expectsto beprovidedwith Cij as a func-

tion in the class Dexp. In other words,

(1.4) _ b,t
Cij(t) = L, art e ,

r--I

where kr is a non-negative integer and at and br are real or complex numbers. Cij should

be a complete distribution function, in particular real-valued; from this it is not hard to show
that the terms with non-real coefficients a r , can be matched in pairs with indices r, r', such

that k_=kr,, a, = if;7,,,b, = b,,--, where the bar denotes complex conjugation. This property

will be referred to as the "conjugacy condition". A typical expression would be

(1.5)
1 - e -t + (--_)[e -(l-i)t - e -(l+i)t ]

or 1-e-t-ae-t sint.

Having made the requisite definitions, we introduce standard terminology relating to the

classification of chains in order to simplify later exposition.

Definition 1.6 A chain is ergodic if, given that it is in state j at time t, if k is another state,

then there is a later time t, such that P[X(tk) = k] > O.
Definition 1.7 A state k is absorbing if, given X(t)=k, then P[X(t')=j]=0, for all

t" > t and j _ k. Thus an absorbing state, once entered, can never be left.

Similarly, a subset of the set of states could form an absorbing subchain if once entered, it is
never left. Clearly, a chain with an absorbing subchain that is not the whole chain cannot be

ergodic.
Definition 1.8 A state k is transient if there is a state j ;_ k such that given X(t) = k, then

for some t' > t, P [X (t') = j] > 0, but given X (t ) = j, then for all t" > t, P [X (t') = k] = O.
Definition 1.9 A chain is irreducible if it has no absorbing subchain, other than itself.

Consider an absorbing state A in a chain M. If M is not Markov, SHARPE requires

that M be acyclic, and in any case M must have the property that all of its states are either
absorbing or transient. The distribution of time until A is reached, conditional upon A even-

tually being reached, and denoted by PA, is provided as output by SHARPE. The output

appears in symbolic "exponomial" form. A sample input and output format for a constant-

rate chain is shown in Figure 1-1.

bind

lam .022

mu .004

end

markov ty2
1 2 2*mu

2 3 mu+lam

1 31am

end
11.

end



cclffty2)
end

CDF for system ty2:

1.0000e+00 t(0) exp( 0.0000e+00 t)

+ -2.0000c+00 t(0) exp(-2.6000c-02 t)

+ 1.0000e+00 t(0) exp(-3.0000e-02 t)

mean: 4.3590e+01

variance: 1.7949e+03

Figure I-I

The class of exponomial distribution functions is a natural one for the study of chains.

In fact, in the Markov case, the function Pa as above is exponomial as can be seen from the

differential theory of constant-rate chains. Let Q be the "infinitesimal generator" matrix,

qq =gij for i ;_j, qii =-_.ij. Then if /_'(t) is a row vector of functions
jti

[PI, " " " , Pi, " " " , Pn ], where the n states of the chain are numbered 1, •. • , n and

Pi(t) is the probability of being in state i P[X(t) = i] at time t, we have

Al _'(t) - F(t)Q, F(O) = l_o,

[Reibman & Trivedi].Here/_o isthevectorof initial

probabilities.Then

A2 F(t) = Poe Q' ,

where we use the matrix exponential e Q_ = _. (Qt)_ . Putting Q into Jordan normal form

Q - SJS -I, it follows from [Moler & Van Loan, p. 381] that

A3

IfJ = diag(Jt, • • . , Jp), then

A4 e "_t= diagfe"qt. , ..-

If

F(t ) = 1_oSe'n S -1.

0 0

0

0

0 ,

I



and mixm i complex matrix, then

A5

e Jd =

_qt

0

0 0

(mi-1)[

• . te xd

e T_d

From formulas A1-A5 it follows that any Pi(t) can be written

(1.1o) m Pl-1

Pi(t) = T. _ aijktke -_'jt ,
j=! k---o

where m is the number of distinct eigenvalues of Q, Xj is the j-th distinct eigenvalue of Q

and pj is the multiplicity of the factor (x-Xj) in the minimum polynomial of Q. Since Pi(t)

must be a real function, the conjugacy condition must hold, and we have an exponomial

function. If i is an absorbing state of a Markov chain, Pi must be a distribution function,

but may be defective. If i is the only absorbing state, then Pi is a complete distribution,

under the assumption made above that all states are either absorbing or transient•

2. Chapman-Kolmogorov Equations

We present a form of the Chapman-Kolmogorov equations for a scmi-Markov process

which will be convenient for our purposes. These are a form of the backwards equations in

that they give probabilities (and densities) by summing over all epochs (times of a jump), and

all results of a jump out of a given state, for the first jump from that state. Similar equations
are stated, with proof, in [Ross], p. 93. We deal with state probability functions, and their

"densities", which integrate to give the probability function. Thus a density does not have
to be the derivative of a distribution.

We recall some of our semi-Markov terminology from section 1. In this section,

i, j, k are states; then Cik(T) = probability that a jump from i to k would be made by time

T, given that i was entered at time 0, in the absence of competing transitions. These are the

transition distributions, and they are assumed to be independent and competing. (They are
distributions of the independent events resulting in jumps to the different states.) This is the

same as the definition from section 1 provided that C gives a complete distribution. Recall

that the unconditional transition function Fik(T ) is the possibly defective distribution of a

jump from i to k by time T, given that i was entered at time 0. The two distributions are

related by

(2.1)
T

Fik(T) = IC'ik(t) I-I [1 - Cq(t)]dt.
j =tc

In words, the probability of leaving i for k by T is the integral of the density of jumping



from i to k at t, times the probability of not having jumped to any other state by t.

Next let Ea(t) = density of (firs0 entry time from i to k, given that i was entered at

0. This is the density corresponding to a possibly defective probability distribution. We

have

T

Elk(T) = dFik + ___ IdFij('C).Ejt(T--_), i _ k,
(2.2) i _ k b

T

Ea(r) = E IdPkj( )'Ej (r- ) •

In words, for the first equation, the density of.[irst arrival in k is the density of]umping to k

plus the density which results from jumping to a third state at a time x <_T, followed by a

subsequent first arrival in k at 7".

The density Ga(t) defined below will be used in forming state probability functions,

and is necessary to compute probabilities of "combined states" in hierarchical, or Cartesian

product, models. It is defined to be the density of entering k at t, given that you entered i at
0. This differs from Ea in that state k may previously have been visited (after leaving state

i). Then we have
r

Gu(T) = Eu:(T) + [Ea('t) G_(T--_)d'c
(2.3) b

T

Ga(T) = Ea(T) + IEa(x) Ga(T_)dx

The first expression is a Volterra integral equation of the second kind, for which [Burton] is a

clear introductory source. It is the same type of equation discussed in Feller's article on

renewal theory [Feller2] and which was previously treated as part of the theory of industrial

replacement in [Lotka]. The equation is also pivotal in later studies of population and

economic growth, as more recent references from chapter 2 of [Kohlas] indicate.

The verbal description of the equation and formula above are now given. For the equa-

tion, "given that you start in k, the density of entering k at T is the density of a first entry,

plus the density of having entered k at a previous time x and subsequently entering at T,
summed over all x". For the formula, "starting in j, the density of arriving in k is the sum

of the density of first arrival, plus that of a previous first arrival followed by a subsequent

arrival from k to k ".

These quantities can be used to express the state probabilities. That is, Pa(T) is the

probability of being in k at T, given that you entered i at 0. We let Sk = _ Fkj be the
j_k

holding time distribution in state k. Then

T

(2.4) Pik (T) = IGik ('_)[ 1 - S k(T---'t)]dx,

T

Pu(T) = 1 - Sk(T) + IGa(_)[I - Sk(T-'t)]dx.

For the first formula, a description in words reads: "the probability of being in k equals the
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density of arriving in k, and subsequently not leaving k, integrated up to the present time".

An alternative formulation of state probabilities, using only the Eij functions can be
derived from the above equations. In fact,

T

Pit (T) = lea ('c) P_ (T --'c)d %
(2.5) 6

T

P (T) = 1 - Sk(T) + - x)dx.
6

Again, the advantages to the approach indicated by the above formulas can be summar-
ized:

1) The method encompasses both Markov and

semi-Markov chains,

2) E a, i, k can be found by SHARPE,

3) after which only one integral equation need be solved

to determine a probability function,

4) then Feller's method of solving the renewal equation can be

applied;

5) the approach is well adapted for hierarchical modeling
as will be seen.

3. The SHARPE Solution Method

Acyclic chains (Markov and semi-Markov)

The method adopted by SHARPE in this case is equivalent to an analysis of paths from
"initial states" to absorbing states. An initial state can be defined as one that has a non-zero

probability at time 0. That is, if i is the state, then the vector/_o has a positive i-th com-

ponent. We discuss this by examining each path separately, as in a "depth-first search",

whereas SHARPE is actually programmed to compute probabilities at states as they are suc-
cessively reached in a "breadth-first" search. The difference is one of form.

For the system to traverse a particular path in the (acyclic, directed) graph representing

the semi-Markov process is an event, which is disjoint from the other events corresponding to

the other paths. Therefore, to get the distribution of an absorbing state, the traversal distribu-

tions of all paths leading from some initial state must be added, weighted by their probabili-

ties of occurrence. We must find a traversal distribution from a given path, and a probability.

Suppose the initial state is i0, the final state is im. The path of concem c can be written

i o, i i, " " " , ira. We define recursively

T

B'n(T) = 1, BJ(T) = IF'il,im(t)BJ+l(T-t)dt,(3.1)

where j=0, ... ,m-l.

Then define D o = B°(T). The derivative and the convolutions are performed "symbolically"

by SHARPE, within the class of functions Exp.
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Let Po = Pio,i1"Pil,i 2.... pi=_1.i .Pio(O). Here,

= IF'plj._j,, ij. _j,,(t )dt. j = O, • • • , m-1.

Then Pk(T) = _.poDo(T), where o runs over all paths ending in k.
¢I

Cyclic chains (Markov)

In the (cyclic) Markov case, SHARPE uses both matrix analysis and estimation in the

transform domain to lind the distribution of an absorbing state. There is no reason why this

method could not be used to give probability functions at transient states, but at present,

SHARPE does not do this. Such information may be useful, however, as the example of a

phased mission points up. Here the "mission" proceeds in two phases, the second com-
mencing at time Tl. The models for the two phases are the same, but certain failure and

reconfiguration distributions have changed due to a maintenance action ([Baker], personal

communication). The initial state probabilities for the model of the second phase are given
by the state probabilities of the first phase at time T I. We indicate how to use SHARPE to
find this information, however.

Recalling the infinitesimal generator matrix Q of section 1, it is clear from (1.10) that

its eigenvalues and their multiplicities are of great importance in finding the probability func-
tions. Any real matrix has a Schur decomposition

(3.2) Q = UHU r,

where U r denotes the transpose of U, U is orthogonal (UU r = I). The nxn matrix H is to

have a nearly upper triangular form. That is, it is block upper triangular, with diagonal

blocks either of size lxl or 2x2. In particular, H is an upper Hessenberg matrix: it is

upper triangular except for possible non-zero entries on the diagonal i = j+l (just below the
main diagonal). Then the eigenvalues of H, and hence of Q are the lxl real scalars and the

complex-conjugate pairs arising from the 2x2 blocks. In order to take Q to this form, one
may first find

G =L, Lk_ i ... Lo.Q.L o ... L,,

where G is in upper Hessenberg form, and L; is a "Householder matrix". A Householder

matrix represents a reflection through an (n-1)-dimensional hyperplane orthogonal to a cer-

tain vector _/. The details of this algorithm can be found in [Golub & Van Loan] p. 222. It

is due to Wilkinson who exposited it in his book [Wilkinson]. Now G has a Q-R decompo-

sition G = WR, where W is orthogonal (essentially a product of rotations) and R is upper

triangular. Another algorithm implicitly finds G'= RW. Using G" as the new Hessenberg

matrix G, we repeat this process until the real Schur form is attained. Then the eigenvalues
(which have not changed through any of these transformations) may be read off.

Next, SHARPE must determine the coefficients aijk of formula (1.10). By transforming
the differential equation in formula A1 of section 1, one obtains

sP(s) - Po = P(s )Q,

or P(s .I - Q) = Po. Each P/(s) is of the form
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Z
j--i k---o(s + Xj)k'

determining the ]3i# is equivalent to finding ai#. But for a particular choice of s, say _1, we

get F(_I)T = Po, T = (_1I - Q). Thus we have n equations for the n 2 unknowns {_3i# }.

Similarly, setting s = _2, " " " , _n, for suitably chosen values, will give enough equations to
determine the coefficients we seek.

We now indicate how to use the SHARPE approach to determine transient state proba-

bilities. This will work for any Markov chain; if general (semi-Markov) transitions are

allowed, the technique is only good for states (if any) that satisfy the following. "If all tran-
sitions out of the state of interest are removed, that which remains is a chain that is

1) pure Markov, possibly with cycles, or

2) acyclic semi-Markov."

Call this condition Condition Q. It is rather remarkable that SHARPE, with some additional

calculation, can treat certain semi-Markov chains with cycles. The computational techniques

involved are amply illustrated by the examples at the end of the paper. Now the method is

described in general terms.

Given a (non-absorbing) state r, we are interested in P,(T) as a function. If there is a

single initial state j, Pj (0) = 1, this is the same as Pjr (T). But using SHARPE, for any state
i _ r, one may find E/r (T). This is done by describing the chain to SHARPE, giving the

transition rates and distributions as usual, but omitting any transitions out of r. This makes

r into an absorbing state r'. We assign in the input to SHARPE, Pi(O) = 1, and all other

initial state probabilities zero. Given that Condition Q holds, SHARPE can find the cumula-

tive distribution function H,,(t) of arrival into r', as well as the overall probability P,' of

reaching r'. Consider

Lir,(T) = Hr (T)'pr'.

This is the unconditional distribution of entering r'. The derivative of L/,, with respect to

time is just E/,(T), since arrival and first arrival are identical for an absorbing state. Thus

SHARPE has found the functions Fir, i *: r. These are then used by means of the second

part of (2.2) to find E,, (T). The second part of (2.5) is an integral equation for the unknown

function P_. Once this has been solved, we need only perform the convolution integration

of (2.5), first equation, to obtain Pp which was the desired state probability function.

4. Decomposition Methods

Given a complex failure-repair-reconfiguration system, it is tempting to decompose it

into independent subsystems, or ones that are nearly independent. Independence allows one

to compute the probability of being in a given state (for each subsystem) by using the pro-

duct formula. Since the computational cost of analyzing a system model increases geometri-

cally with size, significant savings can be had if the system is decomposable in this manner.

As an example, consider two triplex systems attached to a voter as shown in Figure 4-1. are

both required to be functioning for system viability. In each subsystem, Sa, Sb, the failure of

two components causes a triplex failure. If the component failure probabilities are po and

Pb, we have
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(4.1) Ps = Ps. + PSb -- PS. "PSb'

where Ps, = 3"Pa2(1-Pa) + Pa3,

ps. = 3"Pb (1-pb)+Pb3.

Thus we see that in forming system failure probability, we certainly do not need to consider

_parately all failure modes, such as "one unit in Sa has failed, together with 2 units in Sb"

On the other hand, in Figure 4-2. the same failure conditions apply for S, and St,, but

their "failures" are not independent events. We say that unit B I is "isolated" when a I has

failed (the voter has no access to it). To be isolated is as bad as failed. Thus when a I and

b2 are failed, the system has failed, since the voter can see neither b l nor b 2. The "failure

conditions" need to be explicitly analyzed. If we take the simplest Markov chain representa-
tion of So and Sb, we get Figure 4-3. At a given time t we again have

(4.3) Ps,(t) = 3"P,,2(t) - 2.P_(t)

for the failure probability. But it is not clear how to obtain Ps(t) for the combined system.

Figure 4-4a gives an "equivalent" Markov chain; its failure probability function is the same

as for Figure 4-3. The corresponding chain for subsystem Sb is shown in Figure 4-4b. In

the "combined" model (not shown), certainly when one of the subsystems is in a failed

state, the system is failed. Thus (Fa,*) and (*, Fb) give system failure, where * is any
non-failed state of the appropriate subsystem. But also for example (011, ioi) is a failed

state. Due to independence of unit failures, this state's probability is Poll.Piol = Pa(t).Pb(t ).

Examination gives 6 of these states so we finally get

(4.4) Ps(t) = Pso(t)'(1 - Psb(t)) + (1 -- Pso(t))'Psb + 6.Pa(t).Pb(t ).

Therefore, the combined model is the Cartesian product S,, xS b with certain transitions

modified. For example, the definition of Cartesian product implies that (101, ioi) is a state

with a transition of rate 27Lo to (Fo, ioi) and a transition of rate 2_.b to (101, Fb). Next, all

"combined state" satisfying the failure condition are made absorbing. Thus the transitions of

rate 22La from (110, ioi) to (F a , ioi) and rate 2_.b from (110, ioi) to (110, Fb) are deleted.

This reliability problem, of coupled nodes and sensors, can be solved in two ways: firstly by
forming and solving the combined Markov model in the manner we have just indicated, and

secondly by solving each of the two models Sa and Sb, not only for their failure probability
distributions, but also for their state probability functions. These functions are then combined

in some way, similar to (4.4), to give the distribution of the entire system S.

The situation becomes more involved when the components admit of repair. The Mar-

kov model for system So is then shown in Figure 4-5, and the model for St, is similar. At

time T, if we are in a failed state of ,,ca or of St,, the system S has certainly failed. If we are

in a state such as 011 in Sa and ioi in Sb, the system is failed as well. But we may well be

in an "up" state, such as 111 in So and iii in St, and still have to consider that we are

failed. This is because at some previous time t<T, we may have been in 011 and ioi simul-

taneously which would have brought down the system.

The combined model, called m, accurately reflects this state of affairs: the state

(011, ioi) has been made absorbing, so the transitions (named after their numerical rate):
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(4.6) I.ta: (011, ioi) --> (111, ioi)

_[b: (011, ioi) --> (111, ioi)

do not exist.

The problem is how to compute the failure contribution of combined states such as

(011, ioi) without solving the combined model m. This is analogous to the non-repair situa-

tion, with the difference that we cannot simply use the expression PoII(T).PioI(T) as we did

there. The expression we seek could be expressed in words as "the probability that at some

time prior to T, the Sa state was 011 and the St, state was ioi ".

In the semi-Markov case it is not feasible to find these "combined state" probabilities

by using a Cartesian product model. If M and N are semi-Markov chains, the Cartesian pro-
duct MxN will generally not have the semi-Markov property. For example, Figure 4-6 dep-
icts a two state Markov chain and a two state semi-Markov chain with hypoexponential dis-

tribution C(t) = 1 - 2.e -I + e -2t. The combined model (Cartesian produc0 is then shown

with distributions indicated. Since C(t) is not exponential and hence not memoryless, the

density function of the transition (b,x) _ (b,y) depends not only on the "local" time spent

in state (b,x), but also on the entry time into (b,x), or the time spent in (a,x). This violates

the semi-Markov property.

For this reason we do not work explicitly with the "combined model". But we still

consider ordered pairs of states, and say, informally, "the system is in state (A, X), where A
is a state of M, and X is a state of N". We a consider failure condition given by a pair

(B, Y), BeM, YeN. Let Zan.xr(T) = the probability that M has entered state B while N
was in state Y, or N entered state Y while M was in state B, at a time t, 0<t<T, given that

M was in A at 0, and N was in X at 0. It should be helpful to look ahead to Figure 6-1

which gives a good illustration of this situation.

In case A , B or X , Y, one can also interpret Zm.x,r(T) as follows: the probability,

given that M started in A and N started in X, that M has been in B simultaneous with N
being in Y. The quantities are determined by means of two fundamental equations. The first

is:

(4.7) r

ZBA.rr(T) = I(GBB(x)'Prr(X) + P88(x)'Grr(x))[ 1 - ZDB. rr(T--x)]dx.

In words, the right-hand expression is the integral over 'c of the density of entering into the

"state" (B, Y), and subsequently never arriving again (to avoid counting arrivals twice).
This is similar to a Chapman-Kolmogorov forward equation in that we integrate over densi-

ties of the/ast jump into (B ,Y). The quantities GB_, PsB, Grr, Prr are found as in section

2 from the separate models M and N. Then (4.7) is an integral equation to be solved. Note

that if we use a Laplace trartsform method, the expression GsB(x).Prr(x) must be multiplied

in the time domain, and then transformed, or else G---Bs(s) and P-rr(S) convolved before

proceeding further. This is illustrated in the subsequent examples. Given Znn, rr, one can

find ZAn. xr by integrations:

(4.8)
T

Zat_, x'r (T) = I(GaB (x).Pxr (x) + P,u_(x)'Gxr (x))[ 1 - ZnA ' rr (T-x)]dx.

The verbal interpretation of the right-hand expression is left to the reader.
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5. Distributionsfrom Meanand Variance

Modem fault-tolerant computers, as used in high-reliability applications such as

aerospace and nuclear plant control, employ architectural features beyond simple majority
voting of independent processors. Instead, faulty components may be switched off, and

spares activated; the system is changed upon detection of a fault. A simple system with such

dynamic reconfiguration is shown in Figure 5-1. This depicts the triplex degradable to a sim-

plex mentioned in section 1. Practice has generally borne out the constant failure rate

assumption for electronic components during their active life span. But the "reconfiguration

distribution" co(t) has been observed not to be exponential, as in [Finelli]. This transition
includes the time necessary for the system to detect the presence of single fault, isolate the

two components (one good and one bad), and remove them from service.

It has been shown in [Butler & White] that giving the mean M and variance V of co(t)

is sufficient to determine Ps(T) to within a few percent, assuming that M is much smaller

than the reciprocal of the largest failure rate in the system S. Here, T is the mission time.

That is, the system is assumed to fail slowly and reconfigure quickly.

To check such reliability results, obtained by the SURE program package, one might

use SHARPE on the same example. To do so would necessitate presenting co(t) in expono-

mial form. Our goal in the present section is simply to give a way of determining co(t)

explicitly, knowing that it is a distribution with mean M and variance V. We utilize the

method of Cox from his classic paper [Cox]. Three cases exhaust the possibilities.

Case 1. Suppose M 2 = V. Then take o_(t) = 1 - e -x_, where 2L= IIM.

Case 2. If M 2 > V, let k = [M2/V] be the greatest integer less than M2/V. Consider the

linear chain in Figure 5-2, consisting of k stages with rate k2L and a final stage of rate y.

Since the random variable "time to failure" is the sum of the independent transition times of

the stages, the mean and variance are additive (respect the summation). See [Trivedi, p.
192]. Thus

(5.1)
M =k(-_J_-_)+l = 1 + 1y _. 'y

1 1 1

From this one obtains the formula

The practical way to get co(t) in closed form is to find k, k, y and enter a SHARPE file for

the linear chain. SHARPE will then find the desired distribution co(t). Figure 5-3 shows the

input and output formats. In a hierarchical fashion, SHARPE allows the cumulative distribu-

tion function of this chain to be used in a "higher" system, eliminating the need ever to

write the exponomial form of _t) explicitly.

bind

lambda .4167
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gamma .16667
end
markov linear

0 1 4*lambda

1 2 4*lambda

2 3 4*lambda
3 4 4*lambda

4 5 gamma
end
01.

end

cdf(linear)
end

CDF for system linear:

8.5749e-02 t(3) exp(-1.6668e+00 t)

+ 3.2582e-01 t(2) exp(-1.6668e+00 t)

+ 6.1957e-01 t(1) exp(-l.6668e+00 0

+ 1.0000e+00 t(0) exp( 0.0000e+00 t)

+ -1.5241e+00 t(0) exp(-l.6667e-01 t)

+ 5.2412e-01 t(0) exp(-1.6668e+00 t)

mean: 8.3997e+00

variance: 3.7438e+01

Figure 5-3

A complete explanation of SHARPE input and output formats should be found in [Sahner &

Trivedil]. Certain symbolic variable names such as "lambda" are bound to a numerical

value, the system is described by type (markov) and given a name (linea0. The states and

transitions, with rates, are given in the following lines; after an "end", state 0 is assigned

initial probability 1. Then the cumulative distribution function (cdf) is requested of

SHARPE. The cdf then appears in the output, using mantissa and exponent notation to

describe floating point numbers, and "exp" to denote the exponential function. Hence the
meaning of the first line of the output is 8.5749><10 -2 t 3 e -1"6668t. Finally the mean and

variance of the cdf are given.

Case 3. If M 2 < V, we take to(t) to be hyperexponential with distribution

(5.3) o(t ) = 1 -pe -_u - qe -x_ ,

where p+q=l. According to [Trivedi, p. 212],

M = -P--+ q

(5.4) IX Z.'
v = + _M

An effective iterative procedure to find p, q, Ix and 2Lis to set
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p =q =.5,

_. = 1.11M ,

1
g = 1/(2m - T).

Then let (Step 1) X = (M2+V)t2 - ql_, 2. This should approximate plix 2. Then set a new IX

value (Step 2) equal to (M-qfk)lX. Multiplying out the following expression shows (Step 4)

that IX_,(M-11;_,)I(;_,-IX) should equal p, so we take this value as our new p. Finally, (Step

5), take q = l-p, and begin again at (Step 1), repeating until the computed mean M and
variance V are as close to the given values as needed. This method is used in the next sec-
tion to construct a distribution.

6. Examples

As our first example we consider the two models I and H depicted in Figure 6-1.
Model I is a transient-fault detection mechanism. In state A the mechanism is functioning

normally; in state B transient faults are incorrectly diagnosed as being permanent. See [Lala]

p. 20. In state C, a rare kind of error causes spurious signals to be sent external parts of the

system, causing an overall crash.

Model H represents the arrival of, and recovery from, transient faults over the entire

system. State X represents the active presence of a fault, and Y the disappearance (absence),
of faults. A similar model could be used to depict the error-producing and benign phases of

a single "intermittent" fault. Several other reliability estimation packages besides SHARPE

provide a capability for modeling the arrival and detection of permanent, transient, and inter-

mittent faults to the system. See [Trivedi et al] and [Bavuso & Peterson].

We wish to consider the system as being up when the two "subsystems" I and H are

in states (A ,X), (A ,Y), or (B ,Y) respectively. Whenever model I is in state C, the system is

down, but also whenever I is in state B at the same time as model H is in state X, we must

consider the system to have crashed, since a transient fault is present but is incorrectly diag-

nosed (as permanent).

The "combined model", with states {1, ... , 5} is shown in Figure 6-2. The

correspondence between the states of the combined model and the Cartesian product lxH is

indicated. The system failure states are absorbing. Note that there is no state corresponding
to (C,X): it is superfluous. Thus, to find the failure probability at time T, one may take

(6.1) P4(T) + Ps(T).

We are most interested in P3(T), the probability of failure due to being in "state"

(B,X) at some time t < T. For simplicity, suppose that the system starts life with model I
in state A and model H in state X. In the notation of section 4, we see that

(6.2) P4(T) = ZAB.Xx(T).

The totalfailureprobabilitycan alsobe obtainedfrom the solutionof theindividualmodels I

and H. The remainingpartto be consideredisforstateC to be enteredwhile model H isin
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state Y. Since C is absorbing, we know that the density of entering C in model I is

GAC =Eac, and we obtain

(6.3) r

EAc ('r)'Pr (x)d'r.

Then adding expressions (6.2) and (6.3) gives the total failure probability, and should be

equal to the distribution obtained from considering the absorbing states 3 and 5 of the com-
bined model.

In finding ZAs,xx(T) as a closed-form exponomial function, we will need to know GBtj,

PA_, Gas, Pa_, Gxx, and Pxx, as indicated by equatiort_ (4.7) and (4.8). We set coefficients

in system I as

o_= .3,

13=.5.
X=.l.

We have dFBA (t) = .5e -'_ , and since there is only one transition into B, it also follows that

EAB = dFan = .3e -.3t"

Thus by (2.2),

T
(6.4)

EBB (T) = IdFAA ('O'EAs (T - z)d'¢.

Transforming according to the construction in [Feller2] gives

.15
EBs (s) =

(s +.3)(s +.6)"

By (2.3), we know that

E'Bt; .15
GaB(s) = =

1 - EB/1 s2 + .95 + .03"

Applying (2.3) also yields

-- - -- .3s + .18
G_t_ (s) = EAB + E-m "Gsn = s 2 + .9s + .03"

Next, note that St; is the "reliability" function of state B, given that the state was B at

T = 0. Thus SB (t) = e -'6t, so by (2.4), we obtain

= s+.3
s 2+.9s +.03"

From model II, we require Gxx and Pxx. We take r=2 and s=3 which are of course
intended to have didactic value if not realism. In a manner similar to that made in the com-

putation for model I is obtained
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(6.5)

Thenwehavefrom (2.5),

6
gxx (s) =

(s +3)(s +2)

-- 6

Gxx(s) = s2 + 5s"

t"

P=(s) = l-L- [1+ 6----L--
s +2 L s 2+5s

s+3

s2+ 5s"

Now define HB(t)=G_A(t).Pxx(t)+PBB(t)'Gxx(t). We are in fact interested in

H-A (s). To find this one must invert the transforms G'-BB(s), Pxx(S) and so on, perform mul-

tiplication and addition in the time domain, and then re-transform. A numerical mathematics

package is helpful here. By this means one obtains

3

-- i=1 , whereHA(s)- 5

_" V i $ .T-i

i=l

it = [ 6.1500 34.6350 13.0995 ]

= [ 1.0000 11.8000 39.3700 26.9040 0.8859 ].

By (4.7) we have

Zn_zx(s) = n--B(s)'[1 - ZD__].
$

Writing ZnB)¢x in rational form as Z_°'(s)lZ_'(s) yields

(6.5) z_°p= nA°,, z_' = s .(n_°. + rig°'),
6

giving ZB= _,wi s6-i.
i--I

Here _ = [ 1.0000 11.8000 45.5200 61.5390 13.9854 0.00 ].

Next we require HA(t) = GaB(t)'Pxx(t) + PAB(t)'Gxx(t).
find that

L¢ top l t$ botSetting H A (s) = ,,a ,,,A , we

4 5

(6.6) H_°t' = _ui s*-i, II A = _vis 5-i, where
i=l i=1

it = [ 0.3000 2.8500 10.7010 13.8294 ]

= [ 1.0000 11.8000 39.3700 26.9040 0.8859 ].

Next we apply (4.8) and obtain using a similar notation

(6.7)
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z1_o) --n_°' (z_°'- _.z_

z_'(_) =, .n_ z__.

The numerator of ZA has degree 7 in s, and the denominator has degree 9, but they have 5

roots in common. When the corresponding factors have been canceled, what remains is

3

_._ai S 3-i

g_(s) = _--13
Ebis _i

i--I

, where

i_ = [ 1.0000 6.9000 17.7300 ]

b_=[ 1.0000 9.2000 21.6000 5.3790 0.00(30].

Now ZAe,xx(s) has distinct poles, and its partial fraction expansion corresponds to the expli-

cit exponomial form of Z_,_oc(t). Writing simply Z and Z, we have

4 Oi
g(_)= Z_,

i=1 $+Pi

where we write _ and _ in column form

0.98884551031790

-0.05848988319612

0.08378848442687

-1.01414411154865

0

-5.35172855471732

-3.56645190997164

-0.28181953531104

4

Then of course Z(t) = _f'_Oiep't .
i_l

Consider the SHARPE input file for the combined model, together with the output

information about node 4 in Figure 6-3. The distribution given is conditional upon entering

the absorbing state 4. When multiplied by the given entrance probability, this gives the

unconditional distribution, which is seen to agree with ZA_x(t) to 9 digits of accuracy.

bind

alph .3
bet .5

lam .I
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r2.

S3.

end
markov death

14 alph
12r

2Is

23 alph
32bet

34s

351am

end

II.

end

cdf(death,4)
end

information about system death node 4

probability of entering node: 9.88845510e-01

conditional CDF for time of reaching this absorbing state

1._+00 t(0) exp( 0._+00 t)

+ -1.02558398e+00 t(0) exp(-2.81819535e-01 0

+ 8.47336450e-02 t(0) exp(-3.56645191e+00 t)

+ -5.91496676e-02 t(0) exp(-5.35172855e+00 t)

mean: 3.62644539e+00
variance: 1.26658132e+01

Figure 6-3

In the second example we depict several physical components and their failure modes

hierarchically. New features which were not present in the first example include

1) determination of a simple exponential form of a distribution given its mean and variance,

2) semi-Markov transitions,

3) double poles in certain transition transforms,

4) trigonometric solutions,

5) neither coincident state is an initial state.

The example is a simplification of one aspect of the Integrated Airframe/Propulsion Control

System Architecture (IAPSA). See [Cohen et all, p. 71. The nodes (sensor-processor pairs)
form a reconfigurable duplex. The failure rate of each component is _ = .003, the resulting

model is shown in Figure 6-4. Here C and E are failure states, but as in the previous exam-

ple we are concerned with failure modes arising from coincident conditions on separate struc-
tural levels. The transition function c(t) represents the distribution of system reconfiguration
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time. It is the distribution of the random variable which is the sum of the times taken by the

duplex operating system to detect an error, isolate the faulty unit, and configure to a simplex

system. Experimentation with faults injected into the system has yielded a mean time of
.01see with a variance of .001 sec 2. According to section 5, a hyper-exponomial distribution

can be used for c(t). A SHARPE model, and output realizing this are given in Figure 6-5,

model "reconfig".

bind

p .025
mu 7.

lain 150

end

markov reconfig
1 3mu

231am

end

lp

2 l.-p
end

cdf(reconfig)
end

CDF for system reconfig:

I.(X)(X)(X)(_+00 t(0) exp( 0.(KXg(X)(X_+00 t)

+ -2.50000000e-02 t(0) exp(-7.(X)(X)(XX_+00 t)

+ -9.75000000e-01 t(0) exp(-1.50000000e+02 t)

mean: 1.00714286e-02

variance: 1.00564116e-03

Figure 6-5

The other hierarchical component of the system is a dual partition network to which the

nodes are attached. For simplicity we assume that either of two states can hold: both parti-

tions are functioning, or else one partition is functioning and the other is undergoing repair

(by configuring in a spare communication link). The "degraded" network is fully functional
when the "node" system i is in either a stable duplex or simplex mode. However, the

overall system cannot tolerate a simultaneous partition repair and duplex-to-simplex

reconfiguration. The two-state model in Figure 6-6 illustrates the communication network,
model H.

The partition failure rate is taken as a constant cx = .01; due to a rather complete under-
standing of the link repair mechanism, the repair distribution b(t) is precisely known and is

shown in Figure 6-7 (model net-repair). As indicated in the SHARPE output, the mean and

variance of repair are roughly .02see. and .0003 see 2 respectively. Note the factor of t in

one of the terms of b(t).
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bind

p.02
mu 16.

lam 100.

end

markov net-repair
1 2mu

341am
451am

end

Ip

31.-p
end

calf(net-repair)

end

CI)F for system net-repair:

+ 1.(X)O(X)(O_+O0 t(O) exp( O.(X)(X)O(X_+O0 0

-9.80(KIO(X_+01 t(1) exp(-1.(X)O(KXX_+02 t)

+ -9.8000(X)f_-01 t(O) exp(-1._+02 0

+ -2.00000000e-02 t(O) exp(-1.6_+01 t)

mean: 2.08500000e-02

variance: 3.09527500e-04

Figure 6-7

In the notation of the last example we are concerned with the function ZASAq,(T). Tiffs

is the probability given that model I begins (at t=0) in A and model H begins in X, that

before the time t = T model I has been in B simultaneous with model H being in state Y.
to this end one must find, for model I, the quantities GBB, Pss, GAS, and PAS. For model

//, one seeks Grr, Prr, Gxr, and Pxr.

Since B is not a recurrent state, we immediately obtain GBB =0 and thus

PoB (T) = 1 - SB (T) from (2.4), second equation. A calculation of the distributions FBc and

FBD yields

Ss = Fsc + Fso = 1 - pe -(_t)t - qe -(_)t .

Since GAS = EAS = dFAS = 2_e -2_t , we also have

T

P_ (T) = I2d?e-2Ur[1 - S(T-x)]dx.

We could also obtain P_ directly from the SHARPE model in Figure 6-8. The quantity P_t

is obviously e -2_t, and the SHARPE output gives the total failure distribution, that is

PAc + PAD, SO P_ is 1 minus the sum of these two quantities.
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bind

phi .003

pC .025

qC .975
mu 7.

lam 150.

end

semimark nodes

1 2 exp(2*phi)

2 3 exp(phi)

2 4 genN
1,0,0N

-pC,0,-muN

-qC,0,-lam
end

11.

end

cdf(nodes)
end

CDF for system nodes:

1._+00 t(0) exp( 0._+00 t)

+ -1.00006044e+00 t(0) exp(-6._-03 t)

+ 2.14377590e-05 t(0) exp(-7.003000(_+00 t)

+ 3.90007800e-05 t(0) exp(-1.50003000e+02 0

Figure 6-8

Note how in the model, the semi-Markov transition is entered as a

general distribution.

Converting to the s-domain, one has GAB (S) = 2_/(s+2¢) and

F_ (s ) = 2_ [--P-_ + ----q-- ]s+2¢ s+0+_ s+0+Z. "

-- -- -- _---'to --bot
Also, Grr = Err + Err'Grr from (2.3). In fact Grr(s ) = G'r_/Grr where

_tr°_ = 103x(0.00000320s 2 + 0.09864000s + 1.6000)

_-_t = 105x(0.00001000s 4 + 0.0021601000s 3 + 0.13202156800s 2 + 1.60033360000s + 0).

T

Next, from (2.3), second equation, we have G--xr(T) = Exr(T) + Igxr(x)Grr(T--'r)dx, so
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Next, from (2.4), letting L3 denote Laplace transform

f, IOOV V 1-V tFxr(S) = _xr(s).L, tl-b(t)] = _-_(x).-l.(s+--_)2 + s +TOO +

Here V = .98 as indicated in Figure 6-7 (model repair-net)

We begin computing the quantities that govern the coincident states.

GBB (t) = 0 we have from (4.7)

T

ZBs,rr (T) = IHAr (t).[l - ZBB,rr (t)]dt,

where HBr (t) = PBB (t).Grr (t). Solving yields

wd/'
ZB,_.rr = s(_' + n-td_"

After some simplification, one arrives at

10 yj

Z s+5 '
j--i

_,= lO-Sx _'=

4.1360951 0

2.6757974 - 1220.9445298i -2.500031

2.6757974 + 1220.9445298i -2.500031

O. 1175371 -1.660038

-6.5008554 -1.500127

0.2214496 - 11.7051909i -1.070078
0.2214496 + 11.7051909i -1.070078

0.0217117 -0.230031

-3.5689825 -0.070032

+ 0.001565i

- 0.001565i

+ 0.009775i
- 0.009775i

Firstly, since

Manipulation of (4.8) yields the formulas

Z'; 'jr = sZ'dD

--hot D-b_ 7--bat
Z_IB.xr = "'AX"-.BY.

b

Here HAx(t) = GAB(t)Pxr(t) + Pm(t)Gxr(t). We present HAt explicitly; its value when

s=O is of interest in that it represents the long-term or steady-state arrival density. Since in

practice Zaa.vr(t) is very small, formula (4.8) shows that the long-term probability of ending

up in our coincident failure state (B ,Y), instead of one of the other failure states, should be
very close to this number which is 3.09x10 -4. Approximating our semi-Markov models by

constant rate models gives an estimate of 2.99x10 _ for this probability. We do not give

Za_,xr(t) explicitly, since there are many terms. There is a strong temptation to simplify
Z(s) by canceling roots in numerator and denominator which seem equal or very close, but
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this is a numerically delicate procedure. Instead we give Hax(t) explicitly from the partial
fraction expansion.

I0

nax(S) ,-1,o -bo,= H_/HAx = E OjI(s +9j)
j--I

We obtain

e = lo-% F=

-0.000038 + 0.001930i

-0.000038 - 0.001930i
-0.389927

-0.214333

-0.596018 + 29.687109i

-0.596018 - 29.687109i

-0.074953

1.854995

0.016351

-2.500079 + 0.009899i

-2.500079 - 0.009899i

- 1.500030

-0.070030

-1.000109 + 0.009899i

-1.000109 - 0.009899i

-0.160062

-0.000060

- 1.000063

Then writing

we get

_=

8 I0

Wt_ = Zai $i-I, HA_ t-- Zbi $i-I,

i=1 i--1

0 1.0000c+O0

1.2000e-04 9.7306e+02

1.0796e-01 3.8452e+05
3.8301e+01 7.9588e+07

6.7934e+03 9.2674e+09

6.2567e+05 6.0156e+11

2.7433e+07 1.9872e+13

4.2901 e+08 2.6289e+ 14

1.9499e+09 1.0529e+ 15

Letting oj = dj + eji, pj = uj + vii, where i = _(-1), we get

(7.7) Hax(t ) = 03 ep3t + 06 epd + 07 epTt + 08 epd + 09eP¥ +

2eUd (dlCOSVlt + elsinvlt ) + 2eUd (d4cosv4t + e4sinv4t ).
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7. Conclusions

An important recent approach in reliability (and performance) theory is found in the use

of closed-form, analytical solutions. One advantage is that this approach lends itself very

well to models which are built up of smaller submodels in a hierarchical fashion. In this

manner fault arrival behavior, system response, architectural fault-tolerance features, and

operating system features can be analyzed separately. Each model yields an analytic expres-
sion, which can then be put together according to formulas valid for the underlying stochastic

process.

In practice, closed-form hierarchical solution of dependability problems has seen limited

use. One limitation is that in combining two models, new failure states may have to be con-

sidered, which do not arise naturally from any particular failure state of either constituent

submodel. We have presented a method for resolving such a situation. Using our formulas,

it would seem feasible to incorporate the possibility of failure arising from the interaction of

different hierarchical levels into a solution package such as SHARPE. The point of view we

have presented emphasizes certain density functions and distributions arising in the study of
semi-Markov processes. These quantities shed new light even on constant-rate processes, and

are the key to solving models by decomposition. Large classes of (cyclic) semi-Markov

chains can now be solved using the foundations laid in this article. The question of the nu-

merical robustness of the closed-form approach is still an open one. This does not detract

from the fact that "exponomial" methods are of great potential value in solving the problems

of reliability modeling, which remain of both practical and theoretical interest.
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